

Considerations in Nitrogen Direct Analysis in Real Time Mass Spectrometry: An Alternative to Helium

Frederick Li, Paul Liang, Brittany Laramee and Brian Musselman

IonSense, Inc., Saugus, MA, USA

Overview

- Helium is primarily utilized as the DART ionization gas and the current global helium shortage has increased its price and reduced its availability.
- Nitrogen is mainly used for DART in standby mode to improve operational cost efficiency; however, it is also a viable ionization gas.
- Nitrogen was used as the ionization gas for DART and a variety of compounds were analyzed and compared to helium.
- Results were comparable to helium with nitrogen as the ionization gas. In some instances, spectra were simpler and cleaner with nitrogen.

Introduction

- > Helium has been predominantly used as the ionization gas for DART.
- > Nitrogen, which can be produced by generators, is more readily available and cost-effective compared to helium. Yet nitrogen has mainly been utilized for DART in standby mode.
- > There have been a few recent nitrogen DART studies, but at present nitrogen has not been extensively utilized or studied
- > In consideration of the helium shortage, nitrogen was evaluated to determine viability as an ionization gas for DART for a variety of compounds. DART grid voltage and flow rate, as well as, nitrogen purity was also examined.

Methods

- > A DART-SVP ionization source was interfaced to a Waters QDa single quadrupole MS and a Thermo Q Exactive orbitrap high resolution MS.
- > A PEAK Scientific NG3000A nitrogen generator was used to produce the nitrogen for DART.
- ➢ Transmission mode DART and gas temperatures of 250°C and 300°C were utilized for pesticides and drugs/explosives, respectively.
- \blacktriangleright A 2² full factorial design of experiment (DOE) was employed to study and identify DART parameter and nitrogen purity considerations.

Tables 1 & 2: DOE factors and their high and low levels.					
		Level			
Factors		+	-		
Α	DART Grid Voltage	350 V	150 V		
В	Nitrogen Source	Cylinder	NG3000A		
		Level			
	Factors	+	-		
Α	DART Grid Voltage	350 V	150 V		
В	B Nitrogen Flow Rate 2.14		1.84 L/min		

0				
PEAK A	Specifications			
	Purity	99.9995%		
	Pressure	80 PSI		
	Flow Rate	3 L/min		
	Hydrocarbon	<1ppm		
4	Oxygen	<5ppm		

Figure 1: PEAK Scientific NG3000A N₂ generator and its specifications.

Figure 4: Main effect plots for cocaine and RDX showing the effect of varying grid voltage and flow rate.

Results

Comparison between N₂ Cylinder and Generator

- > N₂ DART spectrum of cocaine is comparable between using the generator and cylinder tank.
- > Main effect plot shows higher peak area with the cylinder; however, it is not statistically significant as the effect value is within the 95% confidence level.

Figure 2: Positive ion nitrogen DART spectra of cocaine comparing the generator and cylinder tank.

Figure 3: Main effect plot co generator and cylinder tank.

			0 50
_			100
ι	N2 Tank urce		61. 0 50
C	omparing the	e	Figu heliu
i	nder and ge	enerator.	100
			80-
	R		80 <u>-</u> 60-
	R 2.61E+06		80 60 40
	R 2.61E+06 1.33E+06		80 60 40 20
	R 2.61E+06 1.33E+06 2.41E+05		80 60 40 20 20 20 20
	R 2.61E+06 1.33E+06 2.41E+05 9.67E+05		80 60 40 20 20 100
	R 2.61E+06 1.33E+06 2.41E+05 9.67E+05		80 60 40 20 20 20 100 80

Table 3: DOE run sequence and parameters as well as results for cocaine when comparing cylin

Run	Α	В	AB	y ₁	y ₂	y-bar	R
1	-	-	+	4.40E+06	7.01E+06	5.70E+06	2.61E+06
2	+	-	-	5.06E+06	6.39E+06	5.72E+06	1.33E+06
3	-	+	-	7.42E+06	7.66E+06	7.54E+06	2.41E+05
4	+	+	+	6.22E+06	7.19E+06	6.71E+06	9.67E+05
Effect	-4.08E+05	6.41E+05	-1.52E+05				
onfidence Level	2.23E+06						

Effect of DART Grid Voltage and Flow Rate

> Low grid voltage increases peak area and is significant only for RDX. > Higher flow rate increases peak area and is significant for both cocaine and RDX.

Comparison between Helium and Nitrogen

Spectra are comparable between helium DART and nitrogen DART for all tested compounds.

> In certain instances, such as with RDX, the spectrum is simpler and cleaner with nitrogen DART.

> Replacement and oxidation occurs more frequently with nitrogen DART and is

showing S replacement occurring with only N_2 DART.

and azamethiphos showing no S replacement

Conclusions

> PEAK Scientific NG3000A is the only generator found suitable for DART and the results are comparable to those obtained using Grade 4.8-cylinder tanks.

> DART gas flow rate has a significant effect on signal response for all tested drugs whereas grid voltage has a significant effect only for explosives.

> Replacement and oxidation ion reactions occur more with nitrogen DART.

References

1. Su, R., et al.: The ion source of nitrogen direct analysis in real-time mass spectrometry as a highly efficient reactor: generation of reactive oxygen species. J. Am. Soc. Mass Spectrom. **30**, 581-587 (2019)

2. Song, L., Chuah, W.C., Lu, X., Remsen, E., Bartmess, J.E.: Ionization mechanism of positive-ion nitrogen direct analysis in real time. J. Am. Soc. Mass Spectrom. 29, 640-650 (2018)